Artificial intelligence (AI) is at the core of the industrial revolution 4.0, based on the automatic processing of data. The availability of large volumes of data and computational resources with affordable costs has made possible the training of deep neural networks, a powerful tool in machine learning. Multiple companies are already applying this data-driven programming paradigm, while in parallel, public administrations are also developing strategic plans to lead the sector. However, the same challenge repeats everywhere: the scarcity of professionals capable of understanding the potential and opportunities of these tools, as well as their implementation in a practical and scalable fashion.
According to the AI Index from Stanford University, in 2021, global private AI investment was over $90B, more than double the total private investment in 2020. The number of newly funded AI companies in 2021 was 746. This has resulted in a significant increase of job postings which, in the US, grew from 0.3% in 2012 to 0.9% of total jobs posted in 2021. In Spain, the amount of hiring has doubled compared to its average during the 2015-2016 period. These positions require knowledge on natural language processing, computer vision and robotics, applications that have recently experienced great advances thanks to deep learning. In terms of public funding, the EU funding for research and innovation for AI has risen to €1.5 billion between 2017 and 2019, i.e. a 70% increase compared to the previous period. This context explains why the job analysis portal glassdoor.com has chosen data scientist and machine learning engineers among as the best jobs in the United States during the last years, being the skills in deep learning the most demanded.
The postgraduate course in Artificial Intelligence with Deep Learning aims to satisfy this demand of professionals thanks to an experienced teaching team with world-class reputation in both industry and academia. Course instructors develop deep learning-powered systems for many customers, and also lead ground-breaking research with regular publications in top scientific venues such as the Conference on Neural Information Processing Systems (NeurIPS), the Conference on Computer Vision and Pattern Recognition (CVPR), and the International Conference on Learning Representations (ICLR). With their support, the students in our program become proficient in both the PyTorch software framework for deep learning, and the theoretical basis necessary to understand the opportunities and limitations.